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The techniques of uniform-slender-body theory are employed to investigate the 
hydrodynamic forces and moments acting on a moving ship in shallow water and the 
interaction forces between two such ships on parallel courses. Of particular interest is 
the verification by these methods of the validity of the solutions by matched asymp- 
totic expansions constructed by previous authors. The free surface is assumed rigid 
and each ship is modelled a~ a slender body of revolution located midway between two 
closely spaced parallel planes. The velocity potential due to the presence of a single 
ship is represented as the potential due to singularities distributed along a portion of 
the axis inside the body, together with appropriate image singularities outside the 
body. The boundary condition on the body leads to a linear integral equation for the 
density of singularities, which is solved using the asymptotic analysis discussed by 
Geer (1975). The sinkage force and trimming moment on the vessel are computed. 
When two ships are moving on parallel courses, appropriate interaction potentials are 
introduced in a manner similar to that for a single ship and the integral equations 
resulting from the application of the boundary condition are solved asymptotically. 
The interaction forces and moments between the ships are computed and compared 
with some experimental and other theoretical results. 

1. Introduction 
This paper employs the techniques of uniform-slender-body theory to investigate 

the hydrodynamic forces acting on a moving ship in shallow water, in particular the 
interaction forces between two such ships on parallel courses. The determination of 
these forces is of importance in many practical situations, such as the manoeuvring of 
ships in shallow, congested harbours and the passing of two ships in canals. 

The general problem of the motion of ships in restricted waters has received the 
attention recently of several investigators, e.g. Fujino (1976), King (1977), Newman 
(1969), Tuck (1978), Tuck & Newman (1974), and Yeung (1978). Most of these investi- 
gators use (in one form or another) an aerodynamic equivalence principle (see Tuck 
1978 and Newman & Wu 1973), which essentially models the flow in the far field as 



420 A .  M .  J .  Davis and J .  F. Geer 

the flow past a two-dimensional airfoil. In the near field, a two-dimensional problem 
in a plane containing a cross-section of the ship is obtained by neglecting changes along 
the length of the ship. After solving these two boundary-value problems, the ideas of 
inner and outer asymptotic expansions are used to match the solutions to these two 
problems and thus provide an approximate solution valid over most of the flow field, 
i.e. except near the ends of the ship. Here the small parameter involved in the asymp- 
totic expansions is the shallowness parameter 8 = h/L, where h is the depth of the 
water and L is the length of the ship. 

The method of solution used here is more direct than that discussed above, in the 
sense that it involves a single, relatively simple representation of the solution, which 
will be uniformly valid over the entire flow field, including the ends of the ships. Thus 
the need to compute several different expansions of the solution is avoided, while at  the 
same time the significance of ‘end effects’ in the determination of the forces on the 
ships is taken into account. A significant feature of the rigorous asymptotic analysis 
presented here is that Yeung’s solution by matched asymptotic expansions is shown 
to be embedded, perhaps better than might be expected analytically, in this more 
precise solution of the posed boundary-value problem. This property of verification is 
hardly diminished by the need to restrict consideration to axisymmetric bodies, a com- 
mon feature of the type of slender-body analysis employed in this paper. 

In $ 2, the problem for the motion of a single ship in shallow water is formulated and 
the representation of the solution is constructed. For this case, the velocity potential 
due to the presence of the ship is represented as the potential due to singularities 
distributed along a portion of an axis inside the ship, together with an appropriate 
distribution of image singularities outside the fluid region. The boundary condition on 
the surface of the body leads to a linear integral equation to determine the densities 
and location of the singularities inside the ship. This equation is solved in $3,  using the 
asymptotic analysis discussed by Geer (1975) and Handelsman & Keller (1967). In 
particular, explicit expressions are derived for the leading terms in the expansions of 
the density functions, which involve only the body geomet,ry and purely numerical 
constants, which can be evaluated recursively. The results of $§ 2 and 3 are then used 
in $ 4  to compute the pressure coefficient, making due allowance for end effects, and 
hence the sinkage force and trimming moment on a single vessel due to its motion in 
shallow water. 

In $ 5 ,  the problem of two ships moving on parallel courses in shallow water is 
formulated and solved by an analysis similar to that in Q 3. Here the representation of 
the full potential involves not only potentials for each ship alone but also appropriate 
interaction potentials whose density functions are related to the cross-flow veIocity 
induced by the second ship through factors which depend only on the geometry of the 
first vessel and vice versa and which can again be evaluated recursively. Thus the 
solution presented here is not only more exact than that given by Yeung (1978), with 
whose work comparison is made, but also has this most attractive and practically 
useful feature of being calculated recursively rather than requiring the solution of an 
integral equation or, equivalently, an infinite set of simultaneous equations. After 
using the results of $5 t o  compute the sway force and yaw moment exerted by the 
fluid on each vessel, there follows a brief description of suitably chosen examples and 
discussion of their relevance to the physical problem being modelled. 

Although it is assumed below that, the vessels have rounded ends, the subsequent 
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retention of only the leading terms means that pointed bows or fin-like sterns can be 
simulated in the form of cone- or spindle-shaped ends. The application of the methods 
used here to non-circular cross-sections requires the latter to be considered as pertur- 
bations of semicircular ones. Nevertheless it is expected that such a future investi- 
gation will produce useful results. 

2. Problem formulation for a single vessel 
Consider a slender vessel of length L moving at speed U in the fore-aft direction in 

an inviscid fluid of depth h. Let OX YZ be Cartesian axes fixed in space with Z = 0 the 
free surface, Z measured vertically downwards and OX the line through the bow and 
stern of the vessel. Introduce dimensionless co-ordinates x, y, z fixed in the vessel so 
that the bow and stern are at (1, 0,O) and (0, 0 , O )  respectively, i.e. (see figure 1) 

Lx = x- Ut) Ly = Y ,  Lz = z. (2.1) 

Thus the time t is measured from the instant when the stern coincides with the fixed 
origin. The shallowness of the water and the slenderness of the body are assumed to be 
small and of the same order of magnitude. Then E = h/L is a suitable small parameter 
and, restricting consideration to bodies of revolution, the surface .9# of the vessel is 
given by 

(2 .2)  

where S(0)  = 0 = S(1) and maxS(x) < 1. It is assumed that S(x) is analytic on 
0 Q x < 1 and can be expanded about the end points as follows: 

r = (yS+z2)4 = s(S(s)) i  (0  < x Q l),  

W 03 

S(X) = c,x", S(x) = r, d,(l-x)" 
n-1  n =  1 

with c, + 0 + d,, i.e. non-zero radii of curvature at the bow and stern. This geometrical 
description is that given by Geer (1976) and is a necessary preliminary to the con- 
struction of an aaymptotic solution for the velocity potential $) exploiting the slender- 
ness parameter E as described by Hendelsman & Keller (1967). 

Following Yeung (1978), it is assumed throughout that the free surface is rigid, 
which implies that wave effects are neglected. This is known to be plausible ifthe 
depth Froude number U/(gh)4 is o(E),  where g is the acceleration due to  gravity. Thus 
theinfinite-gravity limit of the more general problem, where wave effects are important, 
appears to be the leading-order problem corresponding to a low-speed perturbation 
analysis. This rigid-free-surface condition reduces the problem to the determination 
of the symmetrical flow past the body and its image above the free surface, enclosed 
between parallel walls a distance 2h apart (see figure 1). 

In terms of the co-ordinates x ,  y, z fixed in the body, the absolute velocity V$(x ,  y, z) 
of the fluid particles due to the motion of the vessel is determined by the equations 

V2$ = 0 throughout the fluid; (2.4) 

a+ 
az 
- = 0  a t  z = f s ;  

a 
an - (4- U L x )  = 0 at r = E ( S ( Z ) ) ~  (0 < x < 1); (2.6) 
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Z=-h: z = -€ 

Z = h  ---*..,\.\p- ,,,,,,,\.,,,,,. , ,,,. . Z = €  

FI~URE 1. The hull of a slender ship in shallow water and its reflection above the free surface 
modelled as a slender body of revolution between two closely spaced parallel planes. The OXYZ 
co-ordinate system is fixed in space, while the non-dimensional ozyz co-ordinate system is fixed 
in the body. 

where a/& denotes differentiation normal to the surface of the body. It is a straight- 
forward matter to satisfy all conditions except (2.6) by representing $ as the super- 
position of potentials due to unknown distributions of singularities on the axis of the 
body. 

The Green’s function Qn(z, y, z) that has singularity 

(y + iz)” 
(28 + y* + z*p+t 

w 
at the origin and satisfies (2.4), ( 2 4 ,  is given by 

2??2€)7t  - - Qo(z,y,z) = (zB+y*+z2)-4+ z [z*+y*+ ( z -  2??2€)8]-4+[z*+y*+ (z+ 
m =  w (  1 ?72€ 1. 

Thus an infinite array of similar image singularities is required to construct each a,, 
with the constant term inserted into the n = 0 series to ensure convergence of the 
rn-summation. In the limit E + 0, each array of singularities becomes, in some sense, 
a line singularity. 

For the corresponding problem in unbounded fluid, Handelsman t Keller (1 967) 
constructed a velocity potential of the form 

where 

(2.10) I -= a(s) ()S)*--C2()€)4+ (c,c,+%f) ( ) E ) 6 + 0 ( € 8 ) ,  

-- l-m) - ( )E)2-dg()E)4+(d~dg+2dsg) (#€)6+0(€*). 

C1 

dl 
Here a and), which measure the extent of the singularity distribution within the body, 
are determined by the requirement that [(z - f ) e  + e2S(z)]B have an expansion in powers 
of E which remains regular when z --f 0 with f = a(€) and when x --f 1 with f = P(E). 
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The existence of the boundaries at z = + E  creates reflected velocities which, near 
the body, are of order U. These are evidently asymmetric and can be cancelled at the 
surface 99 by suitable distributions of higher-order singulmities 

as described by Geer (1975), who showed that the nth density function must be of the 
form [g - a(s)ln [B(E) - Eln gn(& E )  and the end points of integration are given, for all n, 
by (2.10). The multiply reflected velocities are completely taken into account by using 
the Green's functions defined by (2.7), whence the velocity potential can be written in 
the form 

(2.11) 

Here the gamma-function factors are inserted for convenience, corresponds to the 
cross-sectional area  EL)^ nfl(x) of the vessel and en anticipates the order of magnitude 
of the nth density function which has an expansion involving positive powers of e8 and 
In E ,  of which only the leading term is sought in the present calculation, i.e. 

g,(x,s) - gn(x)+O(E810gs) (n z 0) .  (2.12) 

Flux considerations determine that (2.9) remains tme. The image singularities in 
G J X -  5, y, z )  play no role in determining a(€), B(s) because, for m 9 0, the distance 
of the singularity from a point on a, namely [(x - t)a + e8(8 + 4mS4 sin 8 + 4ma)]4, 
cannot become zero, its minimum value being s[2m - (B(x))t]. In  the next section, 
it will be shown that the leading terms {g,(x); n 2 0) of the density functions can be 
determined in a recursive manner. 

3. Solution for the single vessel 

Condition (2.6) requires that 

at 
y+iz = reM, r = ~(5(x) ) f  

which , on substitution of (2.1 I) ,  yields the following equation for the determination of 

(0 c x c I) ,  

(g,(x,4; 12 2 0):  

where the complex-valued functions {Qm} are defined by 
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and an overbar denotes the complex conjugate. On the left-hand side of (3. 1), consider 
first the m = 0 terms. The contribution for n = 0 is 

&s shown by Handelsman & Keller (1967). The n z 1 terms yield 

according to Geer (1976), after correcting two misprints. In his equation (5.4),  the 
power of 2 should be (2n - 1) and the n factor should be deleted. Thus, for each n, the 
leading term arises from integration in a small neighbourhood of the point 5 = X, as is 
evident when the analytic density function is expanded in a Taylor series. 

For the m + 0 terms, the dominant contributions can be calculated more easily 
because IQml 2 2m- (S(z)) t  > 2nt- 1. Indeed, if X( 1 -x) + O(s) ,  then the range of 
values of (z - t ) / c  is asymptotically - 00 to co and hence 

If x( 1 - z) = O(s), then the range of values of (x - g)/e is asymptotically semi-infinite 
but the above result can be substituted into (3.1) with negligible error. Regarding the 
functions {g,(z); n 2 0) as of order unity, the error a t  the nth term is evidently of 
order en+$ since S(z) = O(E). This estimate can, by more detailed analysis, be improved 
for the n = 0 terms to order €2. On the left-hand side of the above equation, the n. = 0 
terms are asymptotically equal to 
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Then, adding to this the similar expression obtained for the corresponding negative 
value of m, as is required in (3.1), the result is 

On substituting (3.2), the expression in curly brackets is readily seen to be uniformly 
of order S(x) = O(E)  as 6 varies from 0 to 1. Similarly, on the right-hand side, the n = 0 
terms yield 

Thus the algebra has demonstrated the physically obvious fact that the reflections of 
the velocity field are negligible at the ends of the body. 

On collecting results, the leading terms of (3.1) yield 

It is now desirable to express the summations over m as Fourier series in 8 and this is 
achieved using the relation 

(3.4) 

(Gradsteyn & Ryzhik 1965) and its derivatives with respect to W. Here c(2e) denotes 
the Riemann zeta function, i.e. 

Equation (3.3) can now be rewritten as 

where the square brackets here denote the integral part. Equating the terms inde- 
pendent of 8, it  is found that 

go(") = ts'(4, (3.6). 

which is the same result as that obtained in the absence of the boundaries at z = f E .  

The e-summation, with factor go(z), in (3.5) corresponds to multiple reflections of the 
infinite-fluid solution. The additional terms are due to the higher-order singularities 
and their multiple reflections. On equating Fourier coefficients in (3.6), the appearance 
of only even cosines in the above-mentioned e-summation means that 

9ep-1(") = 0 (ZJ 2 1)s (3.7) 
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whilst the functions {gaB(4;p 2 1) are determined, after substituting (3.6), by the 
infinite set of equations: 

= ( - f)PWP) W X )  (P 2 1).  (3.8) 

Note that the q-summation becomes negligible at  the ends of the body. The solution 
for g2&) (p 2 1)  must be of the form 

in which the Coefficients {ap} are independent of x and can be determined by sub- 
stituting (3.9) into (3.8) and equating coefficients of powers of s(~). Thus 

and hence 

Not surprisingly, it is seen that the first term on the right-hand side of (3.9) is, for 
each p, due to the pth reflection of the infinite fluid solution. The coefficients {aB8} can 
be calculated recursively; numerical computation showed that 0 < ups < 1 for ell 
p 2 1, s 2 0 and ups + 0 as s + 00 for each p 2 1. Hence each series in (3.9) is con- 
vergent for all S(S) such that 0 < s ( ~ )  < 1, as required. 

Thus, the velocity potential 4 for a single vessel in shallow water is given by 
equations (2.11), (2.7) and (2.12), where a and pare  given by (2.10) and the functions 
(gn} are determined by equations (3.6), (3.7), (3.9) and (3.10). 

4. Pressure on the single vessel 
It is now convenient to consider the time-independent situation in which velocities 

are expressed relative to the axes O ' q z  fixed in the body. Then, by Bernoulli's theorem, 
the pressure P in the fluid is given by 

where P, denotes the pressure when x2 + y2 --f 00 andp is the fluid density. In particular, 
the pressure P, at the bow and stern stagnation points is given by 

(4.2) p, = P, + ipU2. 
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Seeking to evaluate the pressure at  the surface L%(r = ~(S(x)) i ;  0 < x < l), it is first 
noted that, according to (2.6), the normal derivative of (4 - ULx) is zero. The tangential 
components of velocity are 

and, in an x = constant plane, 

( -sin 0 2  + cos 0- a+)/L, az 
aY 

where the derivatives of q5 are evaluated on a. On substituting (2.1 l), the first com- 
ponent above can be written as 

which evidently is identically zero at x = 0 , l  as required in (4.2). The expression in 
curly brackets is 

Here, the methods of the previous section have been used to estimate the f-integrals 
for n 2 1, the remaining m-summations being convergent. However, for the n = 0 
terms, the m-summation must be estimated, leaving a [-integral. What happens 
effectively is that, in contrast to the previous sections, the leading terms in the above 
x-derivatives have an (x - 5) factor which reduces the dominance of the contributions 
from the neighbourhood of f ;  = 2, making a different calculation necessary for the 
n = 0 terms for which the whole range of values of 5 is important. 

The second tangential component of velocity is, on substituting (2.11), equal to 
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A .  M .  J .  Davis and J .  F .  Geer 

( n(2mie)a-1ieis (2% + 1 ) (2mis)n 2 m  cos 8 
9m,  [(z- c)Z + 4m2e2]n+)- [(x - ,p + 4m2~2]n+8 

This is identically zero if n is even, and for n = 2p - 1 reduces to 

where 6, is a Kronecker delta. Thus, if this expression is to be uniformly zero as 
required, the density functions g2p--1(2, 8)  must be identically zero for all p B 1. This is 
consistent with the earlier result (3.7) that the leading terms (g2p-l(x); p 2 1) vanish 
and could reasonably have been anticipated from the boundary conditions. 

For S ( x )  + 0 on W, the second tangential component of velocity can be estimated 
by the methods used for the first component, which yield 

On substituting these results into (4.1), it  is seen that the pressure a t  the surface B 
is given by 

Here, the S’(x)  terms are only significant when S(x)  is small. Hence the sinkage force 
Fs, that is, the downward force exerted by the fluid on the ‘ wetted ’ half of the snrfrtce 
B due to the motion of the vessel, is given by 

after Substituting (4.3) and (3.6). Apart from scaling factors, the leading term of (4.4) 
and the first, term of equation (48) given by Yeung (1978) are respectively the same as 
expressions (6.12) and (6.10) of Tuck (1966) with F,, set equal to zero in his earlier 
equation (5.8).  In addition, the trimming moment about the line x = 9,  z = Oisgiven by 
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In  terms of the fixed axes OXYZ, related to O‘zyz by (2.1), 

and the pressure is given by 

P = P m - p ” ” - 4 3 ) 2 + ( g ) 2 + ( g ) 2 ] .  at 

At the bow and stern, 4 = U(X - U t )  and (4.2) is readily recovered from (4.6). Further, 
in (4.3) the O(s) term arises, when S(z) is not small, from the term @U/L)a$/& in 
(4.1), i.e. the term -pa#/& in (4.6). 

5. Two vessels in parallel motion 
Suppose now that there are two vessels moving at different speeds along parallel 

courses which are a distance D apart, where D = O(L), and introduce notation corre- 
sponding to that defined in f 2 as follows: 

~~x~ = x-qt ,  ,cryj = ~ - $ ( - 1 ) 5 ~ ,  4 Z j  = z (j = 1,2),  

€,Lj = h (j = 1,2),  

a,: rj = ( ~ / 5 2 + ~ 3 2 ) )  = ej(Sj(~j))i (0 < < I )  (j = I ,  21, 
where 

Note that, since Ul 9 U,, the origin of time can be chosen to be the instant when the 
sterns are alongside. The total velocity potential $ is given by 

$ = 41 + 9 2  + $12 + $21, (5.1) 

where 4, (j = 1,2) is the potential due to the motion of thejth vessel in the absence of 
the other and $12, $21 are interaction potentials. Evidently (2.11) and subsequent 
results imply that 

after integrating by parts. Then 
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with relative error O(cj). This last expression is of the same form as the first integral in 
equation (12) of Yeung (1978) and can be identified as the two-dimensional potential 
due to a distribution of line sources of density -&rqh8i(xi) on the axis 0 < x, < 1, 
y, = 0 of the j t h  vessel. The cross-flow velocity due to (5.4) is given by 

and its values Gj on the axis 0 < xk < 1, yk = 0 of the kth vessel, where L j  y, = ( - l)& D, 
Ljxj = Lkxk + ( u k  - 4) t ,  are, with relative error O(cj), equal to 

The normal derivative of #j at the surface a k  is given by 

after substitution of (5.4) and (5.5). The contribution of the xk-derivative in (a#j/hz)a,  
becomes significant when xk( 1 - xk) = O ( c 2 )  but is omitted from (5.6) because it cannot 
affect the terms retained in the subsequent calculation. Thus in any plane xk  = constant 
(0 < xk < 1) the dominant contribution to (5 .6)  at a given instant of time is that due 
to the cross-flow velocity defined by (5.5).  

Now since (5.2) is the exact solution for #j in the absence of vessel k, equation (5.1) 
implies that the boundary condition at  is 

(5.7) 
a 
an - ($j + #kj + $jk) = 0 at @k* 

Then, on writing down a solution of the form (2.11) for #,& it is seen that the cost3 
factor in (5.6) implies that, to leading order, only the odd coefficients are non-zero, 
yielding 

x.f2(:!-l(E, t ,  ck) G$p-l(Xk-<, Yk, zk, ck) d6. (5.8) 

Evidently the leading terms {.f$Ll(E, t ) }  of {f$Ll(E, t, ck)} respectively are evaluated 
without any contribution from #jk to (5.7), i.e. these leading terms correspond to 
application of the approximate condition 

in which the presence of LiYi is ignored and $kj is required to cancel the normal derivative 
of $jon gk. The inclusion of #jkin (5.7) enablesf:"(<, t )  to influence theeven coefficients 
in #kj, corresponding to a higher-order interaction. Such calculations require con- 
sideration of the errors ignored in (5.4) and (5.6) and will not be pursued here. 
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Continuing as in $3, the substitution of (5.6) and (5.8) into condition (5.7) shows 
that the functions {f.:'l(x, t ) ;  p '  2 1 )  are determined by the equation 

= Gj(z , t )cose  (-n G e G n, o < < 1) (5.9) 

where Q,,,, = ( S k ( x ) j  e-is - 2mi and Gj is given by (5.5). The left-hand side of (5.9) has 
the Fourier series 

whence, on equating Fourier coefficients in (5.9), it follows that 

2( 1 - 2)  29+1 [x( 1 -x)12P-' f r g l ( X ,  t )  ( - l )P*  (2p + 2q - l)! 5(2p + 2q) 
22P+29--1(2p - l)! (2q)! [w] f$4l(U+ p = 1  x 

= 0 (q 2 1). (5.10b) 

Remarkably, it is still possible to write down a solution for {f~~~,(z, t ) ;  q 2 0} in terms 
of an expansion in powers of S,(x) in which the coefficients are purely numerical. Thus 

(5.11 a) 

(5.1 1 b )  

and the equations determining recursively the coefficients {bqp; q B 0,r  2 l} in the 
expansions 

m 

(5.12) 

are obtained by substituting for f$i1(q 2 0) in (5.10a, b) and equating powers of 
S,(x). Hence 

bgl = - (2q+ 2w+1 l )5(2+2q)  (q B O), (5.13) 

(q B 0, n z 1). 

Note that, in contrast to the single-vessel case, both odd and even powers of S, are 
required in the expansions. Evidently the coefficients can be calculated sequentially 

th column (n 2 1) being a linear column by column, with each element in the 

combination of the n elements which lie on the counter diagonal at  the top of the 
(211": 1) 
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matrix formed by the previous n ( ezn) columns. Numerical computation showed 

that 0 < b,, < 1 for all q 2 0, r 2 1 and both the ratio and root tests indicated con- 
vergence of each series (5.12) for all &(x) such that 0 < Sk(x) < 1, as required. Thus the 
potential # for two vessels moving on parallel courses in shallow water is determined 
by equations (5.1)-(6.3), (5.8) and (5.11)-(5.13). 

For further comparison with equation (12) of Yeung (1978), the behaviour of 
expression (5.8) in the 'outer field' of vessel k is evidently 

(5.14) 

This expression, which is the two-dimensional potential due to a distribution of 
vortices along the line Yk = 0, 0 < xk < 1, is continuous across the branch cut of the 
arctangent function because the total vorticity ia zero. Hence no trailing vortices 
are generated in the present case, characterized by Lg;C(z) =I= 0 at x = 0,l. 

6. The hydrodynamic forces on the vessels 

of X, Y, 2 and t .  In particular, at the surface g k ,  except where 8, is small, 
The fluid pressure can be found from (4.6) after writing the expression (5.1) in terms 

because the velocities are then uniformly of order 6k and #jk is of order ukh2/D in the 
'far field'. Now, by comparison with (4.3), 

whilst (6.4) implies that, near g k ,  

Si(5) In [(X - U, t - 4 5)2 + ( Y - t (  - 1)j Q2] dE. 

Hence, 

Thus the dominant contribution to the pressure at  a k  due to the motion of vessel j is 
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independent of 0 and therefore cannot produce any lateral force. Further (5.8) implies 

after using the methods of $3.  Since the small parameter appears here only in the 
factor he, it  is clear that, after writing x k  in terms of X, t ,  the contribution of $kj to 
(6.1) must be of second order. 

This simple analysis, using the fixed axes OX YZ, shows how the sinkage force is, to 
leading order, modified by the second vessel and that a higher-order calculation is 
required to determine the dominant terms in the lateral forces. The modification of 
equations (4.4) and (4.5) is that the downward force F$) and the trimming moment 
M$) about the line xk = 4, x = 0, which are exerted by the fluid on the 'wetted ' half of 
the surface g k  due to the motion of both vessels, are given by 

Evidently the steady case of two ships moving with equal velocity U can be recovered 
from formula (6.4) by setting U ,  = U = U ,  and replacing (U, - q) t by the constant 
distance by which the stern of vessel k is longitudinally in advance of the stern of 
vessel j. 

Since the velocities are no longer negligible, the second-order calculation, required 
for the lateral forces, is simplified by using axes fixed in vessel k in order to find the 
pressure at gk. In contrast to (4.1), there remains a time derivative, with P given by 

The immediate simplifications here are that #k(xk ,  Y k ,  z,, t )  = $&k, Y k ,  z k ) ,  given by 
(5.2), and the boundary conditions at a k  imply that the normal component of the 
gradient is equal to (UkLk)-' (a$jk/&)@, = o(sjf&) and therefore negligible. 

Consider first the remaining terms in a$/at. Equation (5.4) implies that, near gk, 

where V, is the cross-flow velocity defined by (5.5) and Y k  has been assumed small. In  
particular 

1 

0 
[$j(xk* Yk, zk, t ) h k  1: - 44 l a /  S;(6) In { [ L k x k  + ('k - q) - Lj 61, -k D2} d6 

+ h(Sk(zk))-)Gj(xk,  t )  cos 8. 
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Also substitution of the Fourier seriek 
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into (6.3) yields 

after using equations (5.10a, b) to simplify the double summations. It is this rearrange- 
ment which ensures that only fik) contributes to the leading terms of the sway force. 
Equation (5.14) shows that this was effectively anticipated by Yeung (1978) in his 
formation of the ‘outer’ solution. Then, on combining ($ki)sk with (q55)lo, and sub- 
stituting (5.11 a, b), it follows that 

(6.7) 
Further, near ak, 

and hence, since fJ5’ is of the same order of magnitude as Qk, the contributions of $,k 
to all terms in (6.5) are an order of magnitude smaller than the corresponding contri- 
butions of $r. 

Consider next the tangential components of {grad [(UkLk)-l $(zk, yk, zk, t )  - x,]}~,. 
By comparison with $4, the first tangential component of 

{grad [(Uk U-’ ($k + $k5) - 4 ) B k  

is asymptotically 

whilst the second tangential component, to order ek, has a Fourier series involving only 
{sin@; q 2 l}. 
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The first tangential component of {grad [(u,&)-' ($j + $ j k ) ] } a ,  is given by 

by substitution of (6 .6) .  The second tangential component is given by 

Hence, on substitution of these results in (6.5),  the pressure at  the surface a k  is given, 
to second order, by 

1 u a  
x 2- (#j + $kj )W,  + (even function of cos 8) . (6.8) 

This expression takes full account of the end effects as did the corresponding formula 
(4 .3)  for the single vessel. The desire for uniform accuracy was the reason for pre- 
cluding the apparently simpler procedure of writing (6.5) in the form 

( Lk axk 

and seeking to show that the dominant terms are those involving $5 and #kj which 
arise from the time derivative in the moving frame. The steady situation is recovered 
from (6.8) by writing U, = U = U2 and replacing (U, - U,) t by a constant distance of 
separation as described earlier. 

Evidently the term 
2h&5(xk, e) [l + Bik)(xk)] (f&(xk))' case 

in (6.7) corresponds to the term V?@j2) in equation (18 )  of Yeung (1978) because when 
it is written in the form 

it is readily identified as the values on Bk of the potential due to a lateral cross-flow 
with velocity G5( 1 past the cylinder yj$ +z% = €isk. Thus the function B:), 
which depends only on the shape of a k ,  measures how the interactions between the 
ships modify the observed cross-flow velocity. Although B(t) is given by (5.11a), it 
must be remembered that its determination involves the higher-order singularities. 
However the structure of equations (5.13) ensures that this is a simple recursive 
calculation. 

Since the lateral force Pp) exerted by the fluid on the 'wetted ' half of vessel k in the 
direction of Y increasing is given by 
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the only terms on the right-hand side of (6.8) which make non-zero contributions to 
(6.9) are, on substituting (6.7), 

However, when these are inserted into (6.9), the end effects are immaterial to the 
leading term of FP), leaving 

= nh2pJ: [l +~k)(x)](~~~(x,t)Sk(~)+h95,(~,t)~~(5))dZ (6.10) 

after an integration by parts. The yaw moment MLk) about the line x k  = &, ?/k = 0 
(directed downward) is given by 

(6.1 1) 

after similar manipulation. 
On comparing (6.10) and (6.11) with equations (52) and (53) of Yeung (1978), with 

Gj(l +sf’) already identified with V,* and the cross-sectional areas being 7rh2&(x) 
and Sl(xl) in the respective notations, the discrepancy involves the appearance of 
2hC1(z1) instead of S,(sl) in some of Yeung’s terms. Here C,(zl) is the blockage 

4mAxJ = 4 x 1 )  +sl(xA 
coefficient given by 

where A, is an added mass coefficient which reduces to S, in the absence of external 
boundaries. 

7. Examples and discussion 
The formulae (6.10) and (6.11) can be used to calculate efficiently the lateral force 

and yaw moment exerted on vessels moving on parallel courses in shallow water. They 
involve only the approximation of the infinite series representation of BJ1)(z) in (5.12) 
by evaluating a finite number of the coefficients {bOsr} from equations (5.13) and then 
straightforward numerical quadrature. In  each of the examples below, it is found that 
only 25 terms in (5.12) are needed to ensure less than 1 yo error in the results tabulated 
in the figures. Simpson’s rule with 20 panels is used to perform the numerical quadra- 
tures required. Further, in all cases, the cross-sectional area of each vessel is taken to 
be of the form S, = C,S(x)  (i = 1,2), where the distribution of values of S ( x )  and the 
normalization constant Ci are respectively chosen in agreement with the cross- 
sectional areas and fractional bottom clearances of the vessels quoted by previous 
authors and with which comparison is being made. 
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FIQURE 2. The sway force (a) and yaw moment (b )  experienced by a stationary vessel due to the 
of another. The geometriasl parsmetera are La/&, = 0.7 12, D/L, = 0,239, max 8, = 0.768, 
= 0.338, I?, = 0.0826. The experimental data am taken from &mery (1974) and are 

speed-&raged V81UeS with the Froude number varying from 0.166 to 0.270, -, experiment; 
- - -  , Yeung (unblocked flow); . . . . , Yeung (with blockage); x x x x , uniform slender body 
theory. 
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Attraction 
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FIQURE 3. The normalized sway force (a) and yaw moment ( b )  acting on two identical vessels 
with one overtaking the other for E = 0.0895, DIL = 0.5, U,/U, = 1.5, and max S ( x )  = 0.820. 
. . . . , slower ship; - - - -, faster ship. 
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FIGURE 4. The normalized away force (a) and yew moment ( b )  acting on two identical vessels in 
head-on encounter with E = 0.0825, DIL = 0.6, and max S(x)  = 0.826. -, UJU, = - 1.0; 
. . . ., U,/U, = 1.5, slower ship; - - - -, U,/U, = 1.6, faster ship. 
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\ Attraction 

D w  IL 
FIGUBE 6. The normalized lateral force experienced by a ship moving in shallow water parallel 
to a fixed vertical wall plotted against the normalized distance D,lL of the contre-line of the 
ship from the wall. 

In  the first example, the sway force and yaw moment experienced by a moored 
look DWT tanker due to the passage of a 30k DWT tanker are computed and the 
results shown in figures 2 (a, b), together with the theoretical and experimental results 
displayed by Yeung (1978) in his figure 4. The normalized force and moment are 
plotted against the normalized stagger distance d,  defined as the difference between 
the X co-ordinates of the centres of the two ships. As can be seen from the plots, the 
computed theoretical results are close to the more accurate of Yeung's two results. 
The discrepancy between these and the experimental results may possibly be explained 
by the marginally acceptable value of DIL which is approximately three times the 
small parameter B .  Furthermore, some allowance for the non-zero Froude number 
should be made in interpreting the experimental data. The cross-sectional area of each 
vessel is taken to be such that S(z) consists of a constant mid-section region for 
a < z Q b, where 0 < a < b c 1, with parabolic ends (see the insert in figure 2). The 
results shown in figure 2 correspond to a = 0.3 and b = 0.8. It is found that, as the 
constant mid-section region is lengthened from zero, corresponding to a prolate 
spheroid, the magnitude of the force and moment increases at all stagger distances. 
A body with a pointed bow and fin-shaped stern, corresponding to S(x)  = 9( 1 - x ) ~ ,  
results in a force and moment even smaller than the corresponding values for the 
prolate spheroid. 

The second example involves two identical vessels travelling in the same d ic t ion  
on parallel courses, with one vessel overtaking the other. The normalized lateral force 
and yaw moment acting on eachvessel are shown in figures 3 (a, b). The cross-sectional 
area is the same as described in the fist example, with a = 0.3 and b = 0.8. The ratio 
of separation distance to ship length is 0.5, the ratio of the speeds is 1.5, the beam to 
length ratio is 0-16, and 8 = 0.825. The bottom clearance is 10 yo of the draught of 
each ship. The slower vessel experiences, aa expected, the larger force and moment 
and, further, its presence is hardly detected by the faster ship. 

The third example differs from the second only in that the ships travel in opposite 
directions. The numerical values of the various parameters involved were deliberately 
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chosen for comparison with Yeung’s third example. The normalized lateral force and 
yaw moment are shown in figures 4 (a, b) .  Evidently, the curves have similar shape to 
those of Yeung, but are of uniformly smaller magnitude. This may be reasonably 
explained by comparison with his figure 4, because his calculations have assumed the 
flow to be unblocked, i.e. he has ignored the function 8:). An additional difference is 
that the yaw moment on the famter ship experiences only one change of sign. 

The final example concerns a ship moving parallel to and at  a distance D, from a 
vertical wall. The boundary condition ensures that this is equivalent to two identical 
ships moving side by side a distance 20, apart. The normalized force of attraction is 
plotted in figure 5 against D,/L. The ship geometry is the same as in example 2. The 
extension of the graph towards small values of D,/L. is limited by the assumption 
stated at  the outset of $ 5  that D = O(L) in order that each vessel be in the ‘outer 
field’ of the other. The relative errors thereby introduced are of order h/D which was 
regarded as O(s) but could have been defined am a second small parameter, particularly 
with a view to considering smaller values of D. 

The authors are grateful to Mohammad Dadfar for assistance with the numerical 
computations. This work was supported in part by the National Science Foundation 
under grant no. MCS-8002534 and by Research Foundation of the State University of 
New York under contract number 240-6163A. 
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